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Boundary Value Problems
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This paper deals with the numerical solution of linear differential
equations of fourth order by finite differences. It points out significant
(but usually overlooked) errors which result from the conventional method of
imposing the boundary conditions in such problems . Revised finite difference
formulas are derived which apply near the boundaries and which eliminate the - i

.
above errors. —--
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~~~~Three commonly encountered boundary conditions are considered . These
correspond, in the terminology of beam analysis, to a clamped end, to a
simply supported end and to a free end.

The improvement in accuracy that can be achieved with the revised
formulas is illustrated by two representative examples. The revised formulas
are shown to reduce the overall error of the numerical solution by a factor
of about five in a typical case.
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SUMMARY

This paper deals with the numerical solution of linear

differential equations of fourth order by finite differences.

It points out significant (but usually overlooked) errors which

result from the conventional method of imposing the boundary

conditions in such problems. Revised finite difference formulas

are derived which apply near the boundaries and which eliminate

the above errors.

Three commonly encountered boundary conditions are consid-

ered. These correspond, in the terminology of beam analysis, to

a clamped end, to a simply supported end and to a free end.

The improvement in accuracy that can be achieved with the

revised formulas is illustrated by two representative examples.

The revised formulas are shown to reduce the overall error of the

numerical solution by a factor of about five in a typical case.
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1. Introduction

Let cp (x) denote an unknown function which is governed by

a linear differential equation of the following form

+ f3(x) D
3
+ + f2(x) D

2
~ + f1(x) D~ + f0(x) • = g(x) (1.1)

where the coefficients f 3(x), f2(x), f1(x), f0(x) and the

forcing function g (x )  are all known functions .

We seek an approximate numerical solution of Eq . (1.1) by

finite differences which satisfies appropriate boundary conditions

at x = 0 and at x = L . Three commonly encountered boundary

conditions are considered in this paper , and are labelled below

according to the terminology used in beam analysis, namely,

1) Clamped End

~
‘ at x 0  or at x L  (1.2)

2) Simply Supported End

$ =

2 ~

‘ at x = O  or at x = L  (1.3)

3) Free End

D2$ = O)
3 at x = 0 or at x = (1.4)

D
~~~~~~

OJ

The boundary conditions imposed at the two ends may be like

or unlike. There is no restriction, except of course that if one

end be free , the other is normally clamped to ensure that the

beam configuration remains stable under arbitrary loading .

I
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In the finite difference analysis , the domain 0�x � i

is subdivided into N’ equal intervals each of width

h = ~~,- (1.5)

If we incl ude the two end points, the above domain contains

(N ’  + 1) stations. The function $ is now represented by its

discrete values (i = 1, 2 , 3 ) at these stations. It is

clear from Eqs. (1.2) and (1.3), however , that the function

vanishes at either or at both of the end points depending on the

particular boundary conditions that happen to apply. In any case

it is convenient in the present context to let N denote the

actual number of stations at which is initially unknown . For

a beam whose ends are either clamped or simply supported ,

N = N ’  — 1. For a beam free at one end and clamped at the other,

N = N ’

It is also convenient to designate the stations at which $

is initially unknown, from lef t to right, by index i = 1, 2, 3,

N . For a beam free at the left end, index i = 1 denotes

the actual free end i tself ,  at location x = 0 . For a beam

clamped or simply supported at the lef t end, however , index i = 1

denotes the first station inboard of the left end, at location

x = h . This convention s implifies the indexing of the final
I-

matrix equations so that they always run f rom i = 1 to i N

inclusive.

To determine the unknowns 
~~ ~~ ~3 ~N ~ 

we rewr ite

Eq. (1.1) in f in i te  difference form for the ith station, then

require that the resulting equation be satisfied for each of the

1~ 2

~~~~~~~~~ 
S ~~~.._-. -, - 

— 
. 4 .  ~~

. .• -5 , ~~~~~~~~~ A , *  - 
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stations i = 1, 2 , 3 N . This produces N simultaneous

equations in N unknowns which suffices to establish the required

solution. The actual manipulations are handled most expediently

in matrix format.

Except for the stations at or immediately adjacent to the

boundaries , the various derivatives in Eq. (1.1) are usually

approximated by the four conventional central difference formulas

summarized in Eqs. (1) through (4) of Table I.

These formulas are based on approximating the function $

in the vicinity of arbitrary station i by a truncated series of

the form

2 (x—x .) 2 
~ 

(x—x.) 3
— $~~) = D$~ (x—x ~) + D $. 2! + D + ... (1.6)

The number of terms retained in this series depends on the accuracy

required in the final difference formulas . Eq. (1.6) is applied

to a number of contiguous stations symmetrically disposed on both

sides of station i . This yields a set of simultaneous equations

which can be solved for the initially unknown coefficients D$
~ i

D2$~
, D3$~ 1 .... of the series thus yielding the required finite

difference formulas. These formulas are represented by the

bracketed expressions in Eqs. (1) through (4) of Table I.

By re—introducing an additional term into the original series

and retracing the above solution, an estimate of the truncation

error is obtained. This is represented by the final term, that

is , the term outside the brackets , in Eqs. (1) through (4) of Table

I. Theoretically, the total truncation error could be represented

1-3
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Table I Conventional Finite Difference Formulas

Central Differences

~~ — 
~~~ i— l 

+ ~ + 
~~i+l 

+ 0] — ~~ h
2

D
3
0. + ... (1)

D20~ ~ + — 20~~ + + 01 — ~~~ h
2

D4
0~ + ... (2)

D30~ 
~~~~~~ 

[
~ ~~i-2 

+ 0
i-l + 0 - 0i+l + 

~~i+2] 
- ~~ h

2
D 5

0~ + ... ( 3 )

D40~ ~~~10i_2 
- 

~~i-l 
+ 60~ - 40 j+l + 0i+2 I - 6 

h
2

D
6

0~~ + ... (4 )

Clamped End

DO
1 ~ ~~ [o + !~2 

+ ol - ~~ h~~D
3

O1 
+ ... ( 5 )

D201 ~ i~ [- 201 + 
~2 

+ °1 - ~~~ h~~D
4

0~~ + ... ( 6 )

— 
~~2 

+~~~~~O
3] 

—~~~~~D
3

O 0 
+ . .•  (7)  

—

~~~ 1~~~~l 
- 40

2 
+ 

~31 - 1 
D 3

00 
+ ( 8)

N

1-4
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Table I Cont’d

Simply Supported End

~ [0 + 
~~2 

+ 0] - ~~ h~~D 3
Ø1 

+ ~~~~~ 
( 9 )

D2
~~ ~ i~.[ 2O

~ 
+ 02 + ol —-~~~~ h

2
D

4
Ø~~ + ... (10)

D
3
01 ~~ [~~l 

- 02 + ~0 31 - ~~~ hD4
Ø 0 

+ • . .  (11)

D401 ~~ 
[+ 50~ — + 0 3] + ~~~ D 40 0 + ... ( 12)

Free End
At station i = 1

(13)

D
2
01 ~ 0 (14)

D 301 = 0  ( 15)

~ 
[ 20~ - 402 + 31 - ~~ D

4
0 1 

+ .. .  ( 16)

At station i = 2

- - 

~~2 E j~~ 1 + 0 + + 0J - I h 2D 3O 2 + ... (17)

D
2
0 2 ~ ~~~ [0 1 

- 2~~ + 0 3 + 0 J - h h 2
D

4
~~2 

+ ... (18)

D
3
0 2 ~ ~~~ [~ + 

~~2 
— 0 3 

+ ~4J - h hD
4
0 1 

+ ... (19)

L 
h .

D
4

0 2 ‘ ~~~ [— 20
i 

+ 50 2 
— 40

3 
+ o 4 J + h  D

4
0 1 

+ ... (20)



~~~~1~~

by an infinite series of which the quantity shown is merely the

leading term.

Notice that all four of the conventional central difference

formulas shown in Table I have truncation errors of order h2

Additional terms of the series which represent the truncation

error are not given in the table but they can be shown to involve

steadily ascending powers of h , that is , h 3 , h 4 , h5 etc.

Hence in the limit of very small mesh size h , the higher order ~~~~~~~~~~

become relatively negligible and the single term shown becomes

itself an adequate approximation to the overall truncation error.

Also notice that for a truncation error of order h2 , the

central difference formulas for D0~ and D2~~ require a band

width of only three, that is, they involve the values of 0 at

only the three successive stations (i—l) , i and (i+1) . To

achieve the same order of truncation error for D30~ and D40 .

on the other hand requires a band width of five .

When reduced to matrix format, the basic relation Eq. (1,1)

has a band width equal to the widest band of any derivative which

appears in i t .  For a given order of truncation error , the deriva-

tive of highest order requires the greatest band width . Thus for

a truncation error of order h 2 
, the final calculation matrix

representing Eq. (1.1) has a band width of five ; it is a penta-

diagonal matrix .

The f i rs t  four formulas in “able I may be applied routinely

at interior stations, but special problems arise near the bounda—

ries . It suff ices  here to illustrate the problem for the left

end. Consider the case where the left end is either clamped or

it~ i-ic

I’,

. 1

5_  - ~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ - ~~~~~~~ -. —. -- .—-..- . - . o, ~~. S ~~ . - - - ... ~~~~~~~~~ A —— ~~‘ - — - - - - ., 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ ~~~
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simply supported . Then at station i=l immediately adjacent

to the end in question , the conventional central difference

expressions for DO , and D20 , involve the three quantities

00, 0~~, and 0 2 . The corresponding central difference ex-

pressions for D30, and D40 involve the five quantities

0 ...~~, 0~~, 01, and 0 3 . The quantities ~~~ 0 2 and 0 3
entail no problems . The quantity 0

~ 
vanishes for either a

clamped end or a simply supported end and therefore involves no

difficult ies. The problem that now arises , however , is that the

quantity 0~~ lies outside the normal domain of integration

o ~ x ~~ 
2. , and is in fact undefined . Thus D 30 , and D40

cannot be evaluated from the usual central difference formulas

until this diff icul ty  be resolved .

A similar probl em arises also if the left  end be free. Re—

call from the labelling convention adopted earlier that for a

free end , the actual end of the beam at location x = 0 is

denoted by station i = 1 . Application of the conventional

central difference formulas at this station involves the five

quantities 
~—l ’ 

00, 0~ , 02, 03 Application of the conven—

tional central difference formulas at the next station i=2

-. 
involves the five quantities ~~~ ~~~ 

0 2 ,  0 31 04 . Once again,

however , the quantities 
~~l 

and are initially undefined

and the conventional equations cannot be applied until this

double indeterminacy be resolved .

It is apparent from considerations of symmetry that

corresponding questions arise also at the right end of the span.

1—7
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Fortunately, there exists a generally accepted convention
for resolving these questions . The rationale of this conventional
solution , along with a careful analysis of its limitations, is
presented in the next section . The results are in some respects
surprising.

1.:

1~
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2. The Conventional Boundary Formulas and Their Limitations

The conventional solution for the left  end clamped can be

found by making the following substitutions in Eq. (1) of Table

I , namely, -

i = o
00 

= 0 (2.1)

-;

The resulting relation can then be solved for 0_i as follows

0_i = 0+1 — 
4 
h3D300 + ... (2.2)

L We can now evaluate Eqs . (1) through (4)  of Table I at station

i = 1 making use of the foregoing substitutions for and

In this way we obtain the conventional finite difference fo rmulas

for a clamped end as summarized in Eqs . (5) through ( 8) of the

table.

A s imilar process may be used for the s imply supported end .

Thus we make the following substitutions in Eq. (2)  of Table I ,

H - namely ,
~ 

—
~

j_ = O

00 
= 0 (2 . 3 )

D 2Ø0 = 0

The resulting relation can then be solved for 0_~ as follows

= — 0+1 + 
~~~~~~ 

Ft4D400 + ... ( 2 . 4 )

2-i
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We can again evaluate Eqs . (1) through (4)  of Table I at

station i = 1 by making use of the above substitutions for 00
and Ø_~ . In this way we obtain the conventional finite difference

formulas for a simply supported end as summarized by Eqs. (9)

through ( 12) of the table.

The conventional solution for the left end free can be found

by making the following substitutions in Eqs. (2) and ( 3)  of Table

I , namely,

A . i = l

D201 = 0 (2 . 5 )

D 301 = 0

The resulting pair of equations can then be solved simultane-

ously for 00 and 01 . This gives

00 
= (20 1 — 0 2 

0)  + ~~~ h
4

D
4
01 

+ ... (2.6)

= (40~ — 40
2 

+ 0 3) + ~
. h

4
D

4
01 

+ ... ( 2 . 7 )

We can now evaluate Eqs . (1) through (4 )  of Table I at station

i = 1 in the usual way, by making use of Eqs . ( 2 . 6 )  and ( 2 . 7 )  to

eliminate the quantities 0
~ 

and 01 wherever they occur . In this
- - 

. 
way we obtain the conventional f inite difference formulas at station

= 1 for a free end as summarized in Eqs . ( 13) through ( 16) of

the table.

Notice that for a free end , special formulas are required not

only at station i = 1 but also at station i 2 . At the latter

I point the quantity 0_~ is no longer involved so that Eq. (2.7) is

no longer needed. But Eq. (2.6) is still needed to eliminate

2 — 2

t.

‘: ‘c,~. ~ ‘ - 
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wherever it occurs. In this way we obtain the conventional finite

difference formulas at station i = 2 for a free end as summarized

in Eqs . (17) through (20)  of Table I.

It is usually assumed that the conventional boundary formulas

all have truncation errors of order h 2 becaus e they are derived

from central difference formulas having truncation errors of order

• Unfortunately, the results listed in Table I show that this

is not necessarily the case. Notice that if the truncation error

terms be omitted from Eqs. (2.2), (2.4), (2.6) and (2.7) by over-

sight, the conventional difference formulas will all seem to be of

order h2 . This point is easily overlooked and it probably

accounts for the widespread misunderstanding concerning the true

truncation errors of the conventional f ini te  difference formulas .

An important aim of this paper is to call attention to this common

oversight.

It is clear from Table I that some of the conventional formulas

have truncation errors of order h , h0 or even ! Such errors

are excessive and are inconsistent with the order of error involved

in the rest of the calculation matrix. They can be expected to

increase unnecessarily the overall error of the numerical solution .

Sample calculations presented later in this paper confirm that

this is indeed the case. It is shown that revision of these faulty

expressions greatly reduces the overall error of the final solu-

tion.

The method of making the needed revisions, and the results of

these revisions, are summarized in the next section.

2-3

- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ 

: 
~±~~~~::: ii~ __ __ 1 ~~ ..I j



- ~~ v - -~~— - ~~~~~~~~- -- --
~~~~~~~~~

-—- 
~~

- -
~~~~~~

--
~~ ~~~

-.-— -- - — —  -- — - -- -

3. Revised Finite Difference: Equations of Consistent Truncation

Error

Fortunately, the method of developing revised finite difference

formulas where needed is straight forward, if sometimes rather

tedious . The function ~ in the vicinity of the end is repre—

-

- 

sented by a truncated power series. The form of the series must
-
, be such as to satisfy the boundary conditions of interest as

previously summarized in Eqs. (1.2) , ( 1.3) or (1.4)

- Thus for a clamped end at x = 0 we set

0 = D
2

00 ~~
.. + D300 ~~~ + D400 ~~ + D 500 ~~~ + . . .  ( 3 . 1)

For a simply supported end at x = 0 we set

0 = D00x + D300 ~~~ + D
4

00 ~~ + D500 ~~ j- + ... ( 3 . 2 )

- 
For a free end at x = 0 we set

(0 —O i ) = DO 1 x + D401 ~~ - + D50 1 ~-~- + ... (3 .3 )

-
~~ The number of terms retained in the series depends as usual
- on the order of the derivative to be estimated and the truncation

error of the estimate. The truncated series expression is applied
p to a number of contiguous stations near the end of the beam . This

yields a set of s imultaneous equations which can be solved for the

initially unknown coefficients D0~~, D
2
00, D

300, .... or

DO1, D
2
01, D

3
01 .... in terms of the quantities 01, 0~~ , 0 3 ?  5 . .

Once these coefficients are obtained in this way, the various den-

vatives of 0 at any specified station may be evaluated analytically

3—i

j
~
;

~~~~~~~~~ -
‘

-- ~i ~~~~~~~~~~~~~~~ ~TT:T 1~~~11~~~~~~ - _ _  I
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— 
from the basic series expression. The result is the finite

difference formula of interest.

By introducing an additional term into the original series

and retracing the original solution in the usual way , the leading

term of the trunc~ tion error can readily be found.

The above process has been carried out for all of the con-

ventional finite difference formulas of Table I which involve

excessive truncation errors. The revisions are always such as to

render all truncation errors consistently of order h . The re-

sults of this revision are summarized in Table II. Notice that

every formula in Table I whose error term is initially of order

h2 reappears in Table II without change . Only the faul ty formulas

have been revised.

An interesting detail appears in Eq. (8)  of Table II. The

truncation error term is seen to involve h 2 but the numerical

coefficient happens to vanish . Hence the true truncation error

degenerates to order h 3 in this particular instance, which is

exceptional. It might be supposed that this circumstance would

permit a reduction of band width here but such is not the case for

if the band width be reduced by one , the resulting truncation
p error is found to be of order h not of order h 2 

. Hence Eq.

( 8)  must be retained as written .

3-2
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Table II Finite Difference Formulas of Consistent Second Order

Truncation Error

Central Differences

~~~~~~~~~~~~~~~~~~~~~~~ —
~~~

h2D30~~
+ ... (1)

D20~ ~ i~. F~ + — 20
~~ 

+ 0j+i + 0] — ~~~ h
2
D
4
0~~ 

+ ... (2)

D 30~ ~~ ~ 
0i—2 + 0 i— 1 + 0 — + .
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0j4.~~] 

— ~~ h~ D5O~ + ... ( 3)

D40~ ~~~ [Oi_2 - 40 i l  + 60~ - 40 i+l + O i +2] 
- ~~~h

2
D
6
0~~ + ... (4 )

Clamped End

D0i~~~ k [ o +~~~ 02 + o ]  -~~~ h 2D 3Ø 1 + ... (5)

D201 ~ 
~~ 

{- 20~ + 
~2 

+ ~] - ~~~ h
2
0
4
0
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3
0
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0 3] — 
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. h 20500 + ... (7)*
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0
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Table II Cont ’d

Simply Supported End 
-

~~~~ [ o +~~0 2 + o 1 —~~~~~h
2 D 30 1 + ... ( 9)

D2
0 1 ~ ~~ 

[- 20~ +0 2 + oj - 
~~~ h2D40 1 + ... ( 10)

D
3
0 i~~~~~~~~~[~~~~

0i
—
~~~~~ 0 2 +h 0 3] 

+~~~~~ h
2
D
5
00

+ ... (ll)*

D4
0 1 ~~~ E~~o i - F~~~~~2 

+~~~ 0 3 - - ~~~~h2D600 + ... (l2)*

Free End

DO1 + + ol 
- ~ h

2
D~ 0~ + ... ( 13)

D201 = 0 ( 14)

D
3
01 

= 0 ( 15)

D
4
Ø 1 

1T [4.23530i — 9.17650
2 

+ 5.64710 3 — 0.70590
4)

+ 0 .2255  h 2D6 01 + ... (i6)*
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Table II Cont ’d

- 

At i = 2  

+ 0 + 
4 

+ 0J - 
~ h 2 D~0 2 + ... ( 17)

~~ 

— 20
2 

+ 03 + O
~ 

— 
h 

h 2D402 + ... (18)

D30 2 ~ 
~~ 

[- 150 k + 
~ 

0 2 - ~ 0~ + ol + ~~~ h 2D501 + ... (19)*

D402 ~ 
~~ 

[— 1.64710 k + 4.235302 
— 3.52940

3 
+ 0.94120

4]

+ 1.1451 h2D601 + ... (20)*

*The asterisks denote those formulas of Table II which d i f fer  from
the corresponding formulas of Table I .
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4. Finite Difference Formulas of Minimum Truncation Error for

Specified Band Width

An interesting and significant feature of Table II is that

the finite difference expressions for the various lower derivatives

usually involve lesser band widths than that required for calcula-

ting . The latter is fixed by the requirement that the

truncation error in the approximation for D40 should be of order

h 2

A natural question that now arises is whether there be any

possible further advantage in making use of this full  available

band width to re~.iuce the truncation errors associated with these

lower derivatives.

This approach is attractive in that it entails no increase

whatever in the overall band width of the final calculation matrix.

Hence it can be -accomplished with a negli gible increase in the

calculation burden.

On the other hand , the method has the limitation that , al though

the accuracy of the lower derivatives is improved , the error in the

overall equation still remains of order h2 . Hence what we have

-- 

here at best is the somewhat uncertain possibili ty of a marginal

further improvement in accuracy at essentially negligible cost.

In order to permit investigation of this possibility , a further

revision of the finite difference formulas was therefore carried

out based on two principles. The f i rs t  was to choose a band width

such as to approximate D40 to order h 2 
. The second was to

utilize the resulting full band with for estimating all lower

4-1
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derivatives. The finite difference formulas obtained in this way,

along with their associated truncation errors, are summarized in

Table III. Notice that all expressions for D40 are the same in

Table III as in Table II. Only the lower derivatives are different.

A further significant feature of Tables II and III is that

the expressions for D4Ø1 at station i=i involve terms in

01, 0~ , 0 3? 0 4 . The first three of these fail within the overall

penta—diagonal matrix format which characterizes all interior

stations i = 2, 3, 4 , ... etc. But the term in 0 4 fal~~ outside

this band at i = i

Similar considerations also apply at the opposite end? station

i = N . Thus D4O
N inviove s terms in 0N-V 0N—V 0N-]. and

and the term in 0 N 3  falls outside the basic penta—diagonal

format.

Fortunately, there is a very simple method to eliminate the

term in 0 4 from the equation at i = 1 and the term in

from the equation at i = N . This restores the stric~ ly penta-

diagonal format which is so convenient and efficient in the final

numerical solution. The details of the method are explained in a

later section of this paper.

4—2

-7 

- - - - .1

- 55.-~~~~~ ~~~~~ - - -. _ 5 -5 ~ - - - - - A — 5. * ”* S. -

~~~~~~~~ ~~~~~~~~~~~~~~~~~ ~~~~~~~~~— - —~ —“~~~~ _-~~ .~~~~ .—--- —-_-. —_ -—--- - . - - -— -——-—- -—----— —.&—~ —~
.---—- - .—‘-—--- —---.—- -~~ —.—- ------- - 

—‘—-.- -



V — _-----.—-.--.. -—.-- — -.--——— -— -- ------.-----—.--,-----_-----— ________

Table III Fini te Dif ference Formulas of Minimum Truncation Error
-

~ for Specified Band Widt **

-

- 
Central Differences

— 4 0~ ...] + 0 + 
4 

0j +l — ~~~ 
0
~.÷J + 

4~

. h~D
50i + •

~~~~
•

(l) *

2 .1 I i  4 5 4 1
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0 i—l — 
~~ 
0
i 

+ 
~~

‘ 0 i+l — T~ 
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+ ~~~ h4D60~ + ...

D30~ 
~~~~~~ 

[- 40 i~~~~ 
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~~~
h
2
D
5
0
~~ 

+ ... (3)

I ’  D40~ ~~ — ~~~~~ + 6O~ — 40 i+l + 0 i+2 ] — ~ h~D
6Ø . + ... (4 )

Clamped End
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- ~~~~~ h
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D
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+ ...
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~~~ 
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0
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Table III Cont’d

Simply Supported End

.~~ 1 1 — ~~~ + — 
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17 — 
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~
-
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~~~~~ 

h3D6Ø~ + ... ( 1l)*

D401 ~ ~~ 01 
— ~ 0 2 + ~~ 

— ~~~ 
— ~~~ h

2
D
6
0~~ + ... ( 12)

Free End

At station i = 1
1 

-
‘

DO
1 ~ ~ 

[— l.l2740~ + 1.270602 
— 0.15880

3 
+ 0.015704]

— 0.0035 h
5
D
6
0
1 

+ ... (i3)~ ,

2

D301 ~ 0 
(15)

~ 2-j r [4.23530 k - 9.17650 2 + 5.647103 
- 0.70590

4]

+ 2255 h D 0
~
+ ... ( 16)

At station i = 2

DO 2 ~ ~~ 
[- 

~~~
0
l 

+ + - ~~~~~~ + 0.0 106 h5D6
~ 1 ( 17) *

-~ D 20 2 ~ ~~~[i.13730 i - 2.35290 2 + 1.29410 3 - 0.0784
0
41

h 
+ 0.0740 h

4D6~P 1
+ •.. (18)*
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Table III Cont ’d

D 3
~ 2 ~ ~~ ll .294i0 i — 2.470602 + 1.05880 3 + 0.11770 4]

+ 0.3765 h3D601 + ... ( 19)

D
4
0
2 ~ i.~. f— i.647l0~~ + 4.23530 2 — 3.52940

3 
+ 0.94120

4
+ 1.1451 h 2D601 + ... (20 )

*The asterisks denote those formulas of Table III which differ
from the corresponding formulas of Table II.

**In this table the band width is always chosen so as to give

a truncation error of order h2 for D40 . The truncation errors

of the other derivatives are then fixed accordingly.
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5. Difference Formulas at Right Boundary

It has been convenient to present the boundary formulas in

Tables I, II and III specifically for the left end of the span.

The corresponding formulas for the right end can readily be in-

f erred from the foregoing results from considerations of symmetry .

-: First we replace 01, 0~ , 0 3? and 04 by the corresponding quanti-

ties 0N ’ 0N—1’ 0N—2 and 0N—4 respectively . In this connection

it is also convenient to reverse the order of corresponding terms

-H from lef t to right so that the terms still appear in order of in—

creasing index. Secondly , we must reverse all signs for the

derivatives of odd order.

We illustrate these rules by applying them to a clamped end,

as given originally in Eqs. (5) through (8) of Table I. Thus for

the right end clamped

DON 
— ~~ - 

2 
0N 1  + + .

~
. h2D30~ (5.1)

D2O N ~ + 0N— 1 — 20
N 1 

— 
~~~ 

h
2
D
4
0
1~ 

(5.2)

D
3
ON ~ ~~ 4 

0N-2 + 0N 1  - 4 
ØN ]+ ~ D

3
ON+i

D40N ~ ~~ ~~~~ 
— 40N— i + 70N 1~ 

1 D 3
~ N+l ( 5 4 )

The same method can of course be applied to any of the other

results developed in this paper to adapt them to the right end of

the span. 
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6. Reduction to Penta-Diagonal Format at Boundaries

If the basic relation, Eq. ( 1.1) , be expressed in terms of

the conventional finite difference formulas of Table I , the re-

sulting calculation matrix is strictly penta—diagonal . It has

earlier been pointed out, however, that if Eq. (1.1) be expressed

in terms of the revised finite difference formulas either of Table

II or of Table III , the resulting calculation matrix , while still

penta—diagonal over all interior rows, fails outside the penta-

diagonal format by one place in the first row j = 1 and last row

i = N . The purpose of this section is to show how these two

minor deviations can easily be rectified.

Let us consider the lef t  end of the span first. More speci-

fically, consider the final matrix equations at stations i = 1

and i = 2 . These will reduce to the form

a11 ~1 + a 12 ~ 2 + a13 0 3 + a14 0 4 = g1 (6.1)

a 21 ~l 
+ a 22 0 2 + a 23 0 3 + a 24 0 4 = g2 ( 6 . 2 )

where the coefficients a
j~~ and the quantities g1 and g2

are all known constants in any particular case .

We can eliminate 0 4 between these two equations by multi-

plying Eq. (6.1) through by a 24 and Eq. ( 6 . 2 )  by - a 14 then

adding . These operations give rise to the following auxiliary

constan ts which can be readily computed as definite numbers , namely ,

a11 
= a 24 c&11 a14a21

I
a12 = a 24 a12 

—

6—1
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a13 = a 24 a 13 — a14a 23

— g1 = a 24 g1 
— a 14g2 ( 6 . 3 )

In this way we finally obtain the relation

a11 + a 12 •2 + 
~]~3 

0~ — g1 (6.4)

Eq. (6.1) of the original matrix can now be replaced by Eq.

(6.4). This substitution reduces the band width at station i = 1

such as to fit the matrix into the required penta-diagonal format.

A corresponding correction can also be made at station

i N .

Notice that these operations , which reduce the band width in

the first and last lines of the final calculation matrix as re-

quired, are very simple and do not adversely affect the truncation

error of the final system of equations.
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7. E xample: Uniformly Loaded Beam with Clamped ~nds

Two examples have been worked out to illustrate the improve—

— ment in accuracy that occurs when the revised difference formulas

of Table II or Table III are used in place of the conventional

formulas of Table I. In this section we consider a beam of uniform

stiffness with clamped ends under a uniform distributed load. In

the next section we consider a beam of variable stiffness with

simply supported ends under a uniform distributed load.

For the uniform beam , the nondimensional governing equation

reduces to

D40 = 1 (7.1)

and the boundary conditions are for clamped ends

0 = 0
at x = 0  and x = 1  ( 7 . 2 )

D 0 = 0

The exact analytical solution of these equations is simply

= 
4~~ 

~2 ( l—x )~ ( 7 . 3 )

• In the finite difference solution, only half the beam need be

considered because of symmetry . Let index M denote the station

- 
. 

-- 
at mid—span . The central difference expressions at stations

i = M-l and i = M may be simplified by the substitutions

~
0M+1 0M— 1

(7.4)

0M+2 = 0M—2

7—1
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The conventional finite difference matrix for this case can

now be written almost by inspection. For the first row i = 1

we simply utilize Eq. (8) of Table I. For the interior rows

i = 2 , 3 , 4 , ... we use Eq. (4) of Table I. The matrix coef f—

cients for the last two rows i = M—1 and i = M are easily

determined by making use of Eqs. (7.4) in connection with Eq. (4)

of the table.

The following matrix is thereby obtained. 
- . -

0

=

The matrix for the revised difference scheme of either

Table II or Table III is identical to Eq. ( 7 . 5 )  except for the
p f irst row . Using the revised difference formula shown in Eq. (8)

of Tab le II or Table III gives the following improved approximation

for the first row , namely,
-p

!.~. [l60~ — 90
2 

+ -~
. 0

3 
— ~ 0 4 ]  = 1 (7 .6)

7-2
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The second row remains unchanged , namely,

~~ [— 40~ + 60~ — 40 3 + 0
4] 

= 1 (7.7)

Multiplying E g . ( 7 . 7 )  through by + and adding it to Eq.

( 7 . 6 )  eliminates 04 and gives

~~~
. 

~~ 
— ~~! + ~~

. O~~
] 

= ( 7 . 8 )

Eq. ( 7 .8 )  is the contracted version of the revised f irst  row

that is inserted into the final matrix. This version is just as

accurate as Eq. ( 7 . 6 )  but has the advantage that it fits strictly

within the penta-diagonal format.

Solutions have been obtained in double precision to Eq. ( 7 . 5 )

for both the conventional f i r s t  row and for the revised f i rs t  row

given by Eq. ( 7 . 8 ) . Results were calculated for three values of

the important dimensionless mesh size parameter h , namely, 
- -

h = 1/10, h = 1/20 and h = 1/40 . The calculations were per-

formed in double precision on the IBM 360/67 computer at the Naval

Postgraduate School.

As convenient measures of the overall relative error of the

final numerical solution , the following two parameters are used,

: - - namely,

—
= 

max (7.9)
-
.

and 
1D

2, - D2
0 1

— 2 
max (7 .10)
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In beam problems ~ expresses the maximum relative error

in the calculated deflection while 6 expresses the maximum

relative error in the calculated curvature, and hence in the

associated bending stresses.

F 

Curves of € and 6 versus h are shown in Fig. 1 corres—

ponding to the conventional difference formulas of Table I and to

the revised formulas of Tables II and III.

The results are quite interesting. They confirm that both

error indices c and 6 are greatest for the coiwentional difference

formulas of Table I. At the other extreme, both c and 6 vanish

identically for the difference formulas of Table III. Of course,
- 

- 
such a complete elimination of all truncation error must be re-

garded as exceptional. It can only happen for those cases, like

the present example, in which the true deflection curve happens to

be a quartic. The curve is a quartic for any uniform beam under

uniform load, irrespective of the boundary conditions.

The revised finite difference formulas of Table II are seen

to produce results in this case intermediate between those given

by Tables I and III. Thus c vanishes but 6 does not. By an

interesting coincidence, the formulas of Tables I and II happen

to give identical curves of 6 versus h in this example.

Inspection of the detailed solutiona reveal, however, that the

actual truncation errors represented by Table II are precisely

equal in magnitude but opposite in sign to those produced by the

conventional formulas of Table I! No specific reason is known for

H this curious and striking co—incidence.
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FIG. 1: ERRORS OF NUMERICAL SOLUTION

FOR BEAM OF UMFORM STIFFNESS
WI TH CLAMPED ENDS.
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8. Example: Beam of Variable Stiffness with Simply Supported Ends

In this section we consider a uniformly loaded beam of van -

able stiffness, simply supported at both ends. Specifically , we

choose a beam governed by the nondimensional equation

D2 (x3D2$) = x3D4~ + 6x2D3* + 6xD2$ = 1 (8.1)

over the range

1 � x � 2 (8.2)

The boundary conditions for simply supported ends are

• = 0)
~ at x = l  and x = 2  (8.3)

D2~ — 0’

The exact solution for 0 is

= (10 Ln 2—3) (i—x) + ~ [1 + 3+x) Ln x _x ] (8.4)

Next we must obtain the conventional finite difference

matrix corresponding to Table I. It is convenient in this case to

multiply Eq. (8.1) through by h4 and to introduce the notation

= 1 + i h i = 1, 2, 3 (8.5)

For all stations other than station i = 1 and station

i N , the regular central difference formulas of Eqs . (2 ) , (3)

and (4 )  of Table I apply. Upon substituting these equations into

Eq. (8.1) and regrouping terms , we can reduce the result to the

following format, namely,

8—1
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(x3 — 3x~h) 1—2 + (— 4x~ + 6x~h + 6x~h
2) i—l

+ (6x~ — 12x~h
2) O

~~ 
+ C— 4x~ — 6x~h + 6x~h

2) 0i+1 (8.6)

+ (x 3 
+ 3x~h) =

For station i = 1 , Eqs. (10), (11) and (12) of Table I apply

and Eq. (8.1) reduces in this case to

(5x~ + 3x~h — l2x1h
2) O

~ 
+ ( 4x~ — 6x~h + 6x1h

2) 02 (8.7)

+ (x~ + 3x~h) 03 =

For station i = N , expressions must be obtained for D20N
D3ON, D40N by analogy with Eqs. (10), (11) and (12) of Table I,

using the rules of symmetry summarized in section 5. Then Eq.

(8.1) reduces to

— ~4~
) 0N—2 + (— 4x~ + 6x~h + 6xNh 2 ) 0N 1  

(8.8)

+ (5x~ - 3x~h - l2x Nh2 ) =

The finite difference matrix defined by Eqs. (8.6), (8.7)

and- (8.8) was solved numerically for various values of the dimen-

sionless mesh size parameter h . Each result was compared with

the corresponding exact analytical solution of Eq. (8.4) for the

same value of h • The relative error c , as defined by Eq. (7.9),

was calculated for each solution. The second error function 6

as defined in Eq. (7.10), was not calculated for the present

example.

The above values of € were plotted against h . The re-

sult is represented in Fig. 2 by the line marked I.
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Consider next the revised solution based upon the revised

finite difference formulas proposed in Table II. Careful examina-

tion of Eq. (8.1) and of Tables I and II discloses that this case

differs from the previous one only in the first and last rows,

i = l  and i = N

The revised equations for the first and last rows turn out

to be as follows.

(~~ x~ + ~~~ x~h - 12 x1h
2) 01

+ (— ~~~ x~ — ~~~ x~h + 6x1h
2) 

~2 
(8.9)

+

and

~~~~
XN N-3~~ 3~~

CN T T~
CN N-2

(8.10)

+ (— ~~~ x~ + ~~~ x~h + 6xNh
2) •N-l + (~~~~ x~ - 4~ 

x~h - l2xNh
2) 0N =

The resulting matrix was then completed, solved and analyzed

in the same genera]. fashion as described above for the previous

case. The corresponding curve of error c versus mesh size h j
is shown in Fig. 2 by the line marked II.

The same general pattern was also repeated for the finite

difference formulas of Table III. In this case the entire matrix

must be modified. The new matrix is defined by the following

three governing equations.
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— For all interior rows 2�i � (N—i) the basic equation is

found by substituting Eqs. (2), (3) and (4) of Table III into

Eq. (8.1) This reduces to the result

(x~ - 3x~~h - ~ x~h
2) 0i-2 + (- 4x~ + 6x~h + 8x .h2) 0i-l

+ (6x~ — l5x .h2) + (— 4x~ — 6x~h + 8x.h 2)

+ (x~ + 3x~b - 
~~ x .h2) 

~~~

j
+2 = h4 (8.11)

The result for row i 1 is found by substituting Eqs. (10),

(2.1) and (12) of Table III into Eq. (8.1) . This gives

32 3 72 2 76 2 - 27 3 189 2 87 2(Tx 1 +
~~~~xi

h _
5~~x1h 01 + (

~~~~~
x1 - r~

_ x
i h + ~~~~xih )

+ (
~ + ~~~~~~ x~h - ~ x1h~ ) 03 + (- ~~~~~~ x~ - 

~~~ x~h + ~~ x1h
2) 04

= h4 (8.12)

The corresponding result for station i = N is found from the
above by applying the rules of symmetry as explained in section 5.

This gives

(-~~~~x~~+~~~ x
~

h +
~~~~~xNh 2 ) 0N-3~~ ~~~~~~~~~~~~~~~~~~~~~~~ 0N-2

27 3 189 2 87 2 32 3 72 2 76 2+ + + r~ 
0w-i + 

~r- 
X

N 
- 

~~
- x~h - x~~h

= h4 (8.13)

Of course , the above results for rows i = 1 and i = N
now lie outside - the band limits for a penta—diagonal matrix , but

they can readily be contracted by the method explained in section

6.
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Eqs. (8.11), (8.12) and (8.13) were solved numerically in

the usual way. The resulting curve of c versus h is shown

in Fig. 2 as the line marked III. The marked change in the error

curve between h = 0.1 and 0.05 is due to the fact that the

sign of the error changes at the centerline .

An interesting comparison of the results from the methods

proposed herein can be made with the results of a study using the

“half—station” method presented in Ref. 1. In the half—station

method the finite difference approximations are made before ex-

panding the derivatives in D2(x3D20) as opposed to the conven-

tiorial, or whole— station method , wherein the fini te difference

approximations are made after D2(x 3D20) is totally expanded.

The conventional fini te difference approximation for the boundary

condition D20 was used at the two ends of the bea!n in Ref. 1.

The relative error ~ , as defined by Eq. (7.9), produced by the

half-station method for this example was shown in Ref. 1 to be of

the form

c ~ (0.4 x l0
2/0.4l96 x 10 2) h2 (8.14)

where the value 0.4 x io 2 is obtained from Fig. 3 of Ref. 1

and 0.4196 x lO
_2 

is the displacement of the beam at the center-

line. This expression for c was verified by a numerical

solution of the half—station equations for several values of h

The error given by Eq. (8.14) is plotted in Fig. 2 as the line

marked H .
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Fig. 2 permits some very interesting and useful conclusions

to be drawn. Like the previous example , it again confirms that

the conventional finite dif ference form~1as of Table I give by

far the highest overall errors. The revised formulas of Table

II are seen to reduce the above errors by a factor of apprc~xi—

mately five. it is interesting that curves II arid III cross at

approximately h ~ 0.05 , and that for mesh sizes finer than

this, tha formulas of Table II give somewhat better results than

these of Table III. Inasmuch as the former are also somewhat

simpler , there would seldom appear to be much reason to resort

to the latter.

Notice too that while the half station method of Ref. 1 is

superior to the conventional formulas of Table I, the revised

formulas of Table II are in turn superior to the half station

method .

We may conclude that the revised fini te difference formulas

of Table II probably represent the best overall compromise between

accuracy and simplicity for most typical problems.
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